Combinatorics of faithfully balanced modules
نویسندگان
چکیده
We study and classify faithfully balanced modules for the algebra of triangular n by matrices more generally Nakayama algebras. The theory extends known results about tilting modules, which are classified binary trees, counted with Catalan numbers. number is a 2-factorial number. Among them n! indecomposable summands, can be interleaved trees or increasing trees.
منابع مشابه
Combinatorics of Balanced Carries
We study the combinatorics of addition using balanced digits, deriving an analog of Holte’s “amazing matrix” for carries in usual addition. The eigenvalues of this matrix for base b balanced addition of n numbers are found to be 1, 1/b, · · · , 1/b, and formulas are given for its left and right eigenvectors. It is shown that the left eigenvectors can be identified with hyperoctahedral Foulkes c...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولOn the combinatorics of unramified admissible modules
We construct a certain topological algebra Ext♯G∨X(χ) from a Deligne-Langlands parameter space X(χ) attached to the group of rational points of a connected split reductive algebraic group G over a non-Archimedean local field K. Then we prove the equivalence between the category of continuous modules of Ext♯G∨X(χ) and the category of unramified admissible modules of G(K) with a generalized infin...
متن کاملCombinatorics in Schubert varieties and Specht modules
This thesis consists of two parts. Both parts are devoted to finding links between geometric/algebraic objects and combinatorial objects. In the first part of the thesis, we link Schubert varieties in the full flag variety with hyperplane arrangements. Schubert varieties are parameterized by elements of the Weyl group. For each element of the Weyl group, we construct certain hyperplane arrangem...
متن کاملOn the combinatorics of extensions of preinjective Kronecker modules
We explore the combinatorial properties of a particular type of extension monoid product of preinjective Kronecker modules. The considered extension monoid product plays an important role in matrix completion problems. We state theorems which characterize this product in both implicit and explicit ways and we prove that the conditions given in the definition of the generalized majorization are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2021
ISSN: ['0097-3165', '1096-0899']
DOI: https://doi.org/10.1016/j.jcta.2021.105472